8,261 research outputs found

    Delivery of human apolipoprotein (apo) E to liver by an [E1(-), E3(-), polymerase(-), pTP(-)] adenovirus vector containing a liver-specific promoter inhibits atherogenesis in immunocompetent apoE-deficient mice

    Get PDF
    Recombinant adenovirus (rAd)-mediated apoE gene transfer to the liver of apoE(-/-) mice is anti-atherogenic. However, first generation rAd vectors were associated with immune clearance of transduced hepatocytes, while an improved [E1(-), E3(-) polymerase(-)] adenovirus vector that persisted in the liver, had transient effects due to cellular shutdown of the cytomegalovirus (CMV) promoter (Ad-CMV-apoE). Here, we utilise an improved class of rAd vector with multiple deletions in the E1, E3, polymerase and pTP (pre-terminal protein) genes, which contains a modular synthetic liver-specific promoter (LSP) to drive expression of the human apoE cDNA (Ad-LSP-apoE) for hepatic gene transfer. Approximately 1 year old apoE(-/-) mice were injected intravenously with 4x10(10) virus particles of either Ad-LSP-apoE or Ad-CMV-apoE. Animals were monitored for plasma apoE, total plasma cholesterol and plasma lipoprotein distribution. The effect of Ad-LSP-apoE on atheroma progression was assessed in animals killed at 8 and 28 weeks after the injections. Ad-LSP-apoE vector administration gave sustained, though low, levels of plasma apoE throughout the study period without inducing a humoral immune response, but failed to reduce plasma cholesterol or normalize the adverse lipoprotein profile. Animals killed 8 weeks after the injections, demonstrated no significant retardation of atherosclerosis, whereas aortic lesions in those killed at 28 weeks were significantly reduced by 30% ( P< 0.006) compared to untreated animals. In summary, the combination of a multiply deleted rAd vector with a liver-specific promoter provided sustained low levels of plasma apoE, resulting in significant retardation of aortic atherosclerotic lesions

    Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals

    Get PDF
    Plasmonic crystals provide many passive and active optical functionalities, including enhanced sensing, optical nonlinearities, light extraction from LEDs and coupling to and from subwavelength waveguides. Here we study, both experimentally and numerically, the coherent control of SPP beam excitation in finite size plasmonic crystals under focussed illumination. The correct combination of the illuminating spot size, its position relative to the plasmonic crystal, wavelength and polarisation enables the efficient shaping and directionality of SPP beam launching. We show that under strongly focussed illumination, the illuminated part of the crystal acts as an antenna, launching surface plasmon waves which are subsequently filtered by the surrounding periodic lattice. Changing the illumination conditions provides rich opportunities to engineer the SPP emission pattern. This offers an alternative technique to actively modulate and control plasmonic signals, either via micro- and nano-electromechanical switches or with electro- and all-optical beam steering which have direct implications for the development of new integrated nanophotonic devices, such as plasmonic couplers and switches and on-chip signal demultiplexing. This approach can be generalised to all kinds of surface waves, either for the coupling and discrimination of light in planar dielectric waveguides or the generation and control of non-diffractive SPP beams

    Retardation of atherosclerosis in immunocompetent apolipoprotein (apo) E-deficient mice followingliver-directed administration of a [E1-, E3-,polymerase-] adenovirus vector containing the elongation factor-1a promoter driving expression of human apoE cDNA

    Get PDF
    Although gene transfer of human apolipoprotein E (apoE), a 34-kDa circulating glycoprotein, to the liver of apoEdeficient(apoE-/-) mice using recombinant adenoviral vectors (rAd) is antiatherogenic, its full therapeutic potentialhas yet to be realized. First generation vectors led to immune clearance of transduced hepatocytes, while animproved vector with adenovirus regions E1, E3 and DNA polymerase deleted also had transient effects due tocellular shutdown of the cytomegalovirus (CMV) promoter. Here, we have studied an alternative promoter from thecellular elongation factor 1a (EF-1a) gene, injecting 6-8 week old apoE-/- mice intravenously with 2x1010 virusparticles (vp) of the [E1-, E3-, polymerase-] rAd vector Ad-EF1·-apoE. Plasma apoE levels were low (18-55 ng/ml)and failed to reduce plasma cholesterol or normalize the adverse lipoprotein profile. By contrast, thehyperlipidaemic phenotype of apoE-/- mice treated with Ad-CMV-apoE (2x1010 vp) was transiently normalized.Nevertheless, at termination (265 days) the aortic lesion areas in animals given Ad-EF1·-apoE were significantlyreduced by 15% (P<0.05) compared to untreated animals, a decrease approaching that in Ad-CMV-apoE-treatedmice (23%; P<0.02). Importantly, the attenuation of apoE transgene expression noted with the CMV promoter wasabsent with the EF-1a promoter, which gave relatively sustained, albeit low, levels of plasma apoE throughout thestudy period

    Incremental, Inductive Coverability

    Full text link
    We give an incremental, inductive (IC3) procedure to check coverability of well-structured transition systems. Our procedure generalizes the IC3 procedure for safety verification that has been successfully applied in finite-state hardware verification to infinite-state well-structured transition systems. We show that our procedure is sound, complete, and terminating for downward-finite well-structured transition systems---where each state has a finite number of states below it---a class that contains extensions of Petri nets, broadcast protocols, and lossy channel systems. We have implemented our algorithm for checking coverability of Petri nets. We describe how the algorithm can be efficiently implemented without the use of SMT solvers. Our experiments on standard Petri net benchmarks show that IC3 is competitive with state-of-the-art implementations for coverability based on symbolic backward analysis or expand-enlarge-and-check algorithms both in time taken and space usage.Comment: Non-reviewed version, original version submitted to CAV 2013; this is a revised version, containing more experimental results and some correction

    Industry Career Guide: Construction

    Get PDF
    This paper is a career guide on the Philippine construction industry. It provides a general overview into the nature and role of construction in the context of the general macroeconomy, highlights its employment-generating capacity and manpower development prospects, and gives jobseekers and other interested parties a peek into the industry’s likely direction in terms of performance and labor market interface within the next short run cycle

    Long-Term and Seasonal Trends in Estuarine and Coastal Carbonate Systems

    Get PDF
    Coastal pH and total alkalinity are regulated by a diverse range of local processes superimposed on global trends of warming and ocean acidification, yet few studies have investigated the relative importance of different processes for coastal acidification. We describe long-term (1972-2016) and seasonal trends in the carbonate system of three Danish coastal systems demonstrating that hydrological modification, changes in nutrient inputs from land, and presence/absence of calcifiers can drastically alter carbonate chemistry. Total alkalinity was mainly governed by conservative mixing of freshwater (0.73-5.17mmolkg(-1)) with outer boundary concentrations (similar to 2-2.4mmolkg(-1)), modulated seasonally and spatially (similar to 0.1-0.2mmolkg(-1)) by calcifiers. Nitrate assimilation by primary production, denitrification, and sulfate reduction increased total alkalinity by almost 0.6mmolkg(-1) in the most eutrophic system during a period without calcifiers. Trends in pH ranged from -0.0088year(-1) to 0.021year(-1), the more extreme of these mainly driven by salinity changes in a sluice-controlled lagoon. Temperature increased 0.05 degrees Cyr(-1) across all three systems, which directly accounted for a pH decrease of 0.0008year(-1). Accounting for mixing, salinity, and temperature effects on dissociation and solubility constants, the resulting pH decline (0.0040year(-1)) was about twice the ocean trend, emphasizing the effect of nutrient management on primary production and coastal acidification. Coastal pCO(2) increased similar to 4 times more rapidly than ocean rates, enhancing CO2 emissions to the atmosphere. Indeed, coastal systems undergo more drastic changes than the ocean and coastal acidification trends are substantially enhanced from nutrient reductions to address coastal eutrophication.Peer reviewe

    Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9

    Get PDF
    Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle wasting disease caused by mutations in the DMD gene. In 51% of DMD cases, a reading frame is disrupted because of deletion of several exons. Here, we show that CjCas9 derived from Campylobacter jejuni can be used as a gene editing tool to correct an out-of-frame Dmd exon in Dmd knockout mice. Herein, we used Cas9 derived from S. pyogenes to generate Dmd knockout (KO) mice with a frameshift mutation in Dmd gene. Then, we expressed CjCas9, its single-guide RNA, and the eGFP gene in the tibialis anterior muscle of the Dmd KO mice using an all-in-one adeno-associated virus (AAV) vector. CjCas9 cleaved the target site in the Dmd gene efficiently in vivo and induced small insertions or deletions at the target site. This treatment resulted in conversion of the disrupted Dmd reading frame from out-of-frame to in-frame, leading to the expression of dystrophin in the sarcolemma. Importantly, muscle strength was enhanced in the CjCas9-treated muscles, without off-target mutations, indicating high efficiency and specificity of CjCas9. This work suggests that in vivo DMD frame correction, mediated by CjCas9 has great potential for the treatment of DMD and other neuromuscular diseases

    Self-consistent symmetries in the proton-neutron Hartree-Fock-Bogoliubov approach

    Full text link
    Symmetry properties of densities and mean fields appearing in the nuclear Density Functional Theory with pairing are studied. We consider energy functionals that depend only on local densities and their derivatives. The most important self-consistent symmetries are discussed: spherical, axial, space-inversion, and mirror symmetries. In each case, the consequences of breaking or conserving the time-reversal and/or proton-neutron symmetries are discussed and summarized in a tabulated form, useful in practical applications.Comment: 26 RevTex pages, 1 eps figure, 9 tables, submitted to Physical Review
    corecore